PROJECT TITLE: Hull city artwork

PROJECT NO. 4167 DATE: 01/06/2017 report ver: 03 Prepared by: AL Checked by: ET

PROJECT TITLE: Hull city artwork PROJECT NO. 4167 DATE: 01/06/2017

report ver: 03 Prepared by: AL Checked by: ET

PROJECT TITLE: Hull city artwork PROJECT NO. 4167 DATE: 01/06/2017

report ver: 03 Prepared by: AL Checked by: ET

Contents

1.0	Introduction	
2.0	Structure	
2.1.	.1 Structure volume	
3.0	Loads	
4.0	Design	
4.1.	.1 Base disc design	
5.0	Analysis	

PROJECT TITLE: Hull city artwork

PROJECT NO. 4167 DATE: 01/06/2017 report ver: 03 Prepared by: AL Checked by: ET

1.0 INTRODUCTION

This report concerns a feasibility study for a proposed art installation in a square outside the Holy Trinity Church in the city of Hull.

The project is located in Hull, Yorkshire. The proposed installation is an $8m \times 8m$ grid of 16 steel hollow columns.

The steel columns are designed with the following properties:

Material: steel

Shell thickness: 3mmDiameter: 2 metresHeight: 6 metres

PROJECT TITLE: Hull city artwork PROJECT NO. 4167

DATE: 01/06/2017

report ver: 03 Prepared by: AL Checked by: ET

2.0 STRUCTURE

The structure is designed as a series of curved, perforated steel cassettes, which end with folded fins to allow bolting. Each steel cassette is 2m tall and is an arc $1/6^{th}$ of the circular base.

Three steel cassettes, put on top of each other and connected with flat plates, form a full height element.

Six full height elements form the total cylinder. Those are further connected together with a top ring.

Over the entrance, only two steel cassettes are put together.

2.1.1 STRUCTURE VOLUME

The volume of one perforated steel cassette, not comprising the fins, is:

$$V_{SC} = 0.0045 \, m^3$$

The volume of one full height steel cassette is:

$$V_{SC,FH} = V_{SC} * 3 = 0.0045 * 3 = 0.0135 m^3$$

The volume of the entrance steel cassette is:

$$V_{SC,ENTR} = V_{SC} * 2 = 0.0045 * 2 = 0.009 m^3$$

The volume of a single fin element, full height is:

$$V_{FIN,FH} = t * L * H = 0.003 * 0.1 * 6 = 0.0018m^3$$

The volume of the top ring is:

$$V_{TR} = 0.002m^3$$

PROJECT TITLE: Hull city artwork PROJECT NO. 4167

DATE: 01/06/2017

report ver: 03 Prepared by: AL Checked by: ET

Total volume of all steel cassettes:

$$V_{SC,TOT} = V_{SC,FH} * 5 + V_{SC,ENTR} = 0.0675 + 0.009 = 0.0765m^3$$

Total volume of all fins:

$$V_{FINS,TOT} = 0.0018 * 2 * 8 = 0.0304m^3$$

Total volume:

$$V_{TOT} = V_{SC,TOT} + V_{FINS,TOT} + V_{TR} = 0.0765 + 0.0304 + 0.002 = 0.109m^3$$

3.0 LOADS

The wind pressure has been conservatively assumed as:

$$W_{pressure} = 1.5 \frac{kN}{m^2}$$

The area exposed to the wind pressure has been conservatively considered as:

$$A_{exposed} = D * H = 2 * 6 = 12m^2$$

The total wind load has been calculated considering a triangular distribution of the pressure from bottom to top. The total wind load is therefore:

$$W_{TOT} = W_{pressure} * A_{exposed} = 1.5/2 * 12 = 9kN$$

The structure weight as been calculated assuming a steel density of:

$$\gamma = 76.98 \frac{kN}{m^3}$$

Structure total weight:

$$P_{TOT} = V_{TOT} * \gamma = 0.109 * 76.98 = 8.4kN$$

DESIGN

To have a stable system, the stabilizing moment has to be more than the overturning moment. In addition, a safety factor of 1.2 has been considered:

$$M_S \ge 1.2 * M_O$$

The overturning moment is calculated considering the wind resultant force applied at 2/3rd of the total height, as a triangular distribution of the pressure was assumed.

$$M_0 = W_{TOT} * \frac{2}{3} * 6 = W_{TOT} * 4 = 9 * 4 = 36kNm$$

The stabilizing moment is calculated as the weight force, applied in the barycentre of the cylinder, multiplied for a lever arm from the cylinder edge:

$$L_{lever} = \frac{D}{2} = 1m$$

The stabilizing moment will include an additional stabilizing weight P_{ADD} , which will be given by an additional steel disc. This disc will be the base of the structure, and the cylinder will be built attached to it.

PROJECT TITLE: Hull city artwork PROJECT NO. 4167

DATE: 01/06/2017

report ver: 03 Prepared by: AL Checked by: ET

$$M_S = (P_{TOT} + P_{ADD}) * L_{lever} = 8.4 * L_{lever} + P_{ADD} * L_{lever}$$

Hence, the additional weight P_{ADD} must be at least:

$$\begin{split} 1.2*M_{0} &= (P_{TOT} + P_{ADD})*L_{lever} \\ 1.2*36 &= 8.4*L_{lever} + P_{ADD}*L_{lever} \\ P_{ADD} &= \frac{1.2*36 - 8.4*L_{lever}}{L_{lever}} = \frac{1.2*36 - 8.4*1}{1} = 34.8kN \end{split}$$

4.1.1 BASE DISC DESIGN

The base disc is designed as a full steel plate connected to the superstructure. Its thickness t needs to be designed to give at least the required additional weight P_{ADD} .

$$A * t * \gamma \ge P_{ADD}$$

$$(3.14 * 1^2) * t * 76.98 \ge 34.8$$

$$t = \frac{34.8}{3.14 * 76.98} = 0.144m = 144mm$$

5.0 ANALYSIS

A meshed model of a single cylinder has been analyzed in SOFISTIK.

The loads and loads combination considered are:

Loads: DL Wind – 1 direction only

Load combinations: DL+Wind

Buckling

The fist buckling factor is 4.28, corresponding to an instabilization of a bottom perforated steel cassette in correspondence of the leeward side, where the largest compression stresses are located.

PROJECT TITLE: Hull city artwork PROJECT NO. 4167 DATE: 01/06/2017

report ver: 03 Prepared by: AL Checked by: ET

6.0 **DETAILS**

PROJECT TITLE: Hull city artwork PROJECT NO. 4167

DATE: 01/06/2017

report ver: 03 Prepared by: AL Checked by: ET

